
PRACTICAL 2

Aim of this practical:

In this practical we are going to look at commonly used spatial models

1. CAR model for areal data

2. A geostatistical model for binary presence-absence species distribution data

3. A Point process model for point-referenced data

0 Areal (lattice) data

In this practical we will:

• Explore tools for areal spatial data wrangling and visualization.

• Learn how to fit an areal model in inlabru

In areal data our measurements are summarised across a set of discrete, non-overlapping
spatial units such as postcode areas, health board or pixels on a satellite image. In conse-
quence, the spatial domain is a countable collection of (regular or irregular) areal units at
which variables are observed. Many public health studies use data aggregated over groups
rather than data on individuals - often this is for privacy reasons, but it may also be for
convenience.

In the next example we are going to explore data on respiratory hospitalisations for
Greater Glasgow and Clyde between 2007 and 2011. The data are available from the
CARBayesdata R Package:

library(CARBayesdata)

data(pollutionhealthdata)
data(GGHB.IZ)

The pollutionhealthdata contains the spatiotemporal data on respiratory hospitalisa-
tions, air pollution concentrations and socio-economic deprivation covariates for the 271
Intermediate Zones (IZ) that make up the Greater Glasgow and Clyde health board in Scot-
land. Data are provided by the Scottish Government and the available variables are:

• IZ: unique identifier for each IZ.
• year: the year were the measruments were taken
• observed: observed numbers of hospitalisations due to respiratory disease.
• expected: expected numbers of hospitalisations due to respiratory disease com-
puted using indirect standardisation from Scotland-wide respiratory hospitalisation
rates.

• pm10: Average particulate matter (less than 10 microns) concentrations.
• jsa: The percentage of working age people who are in receipt of Job Seekers Al-
lowance

• price: Average property price (divided by 100,000).

1

http://statistics.gov.scot.

The GGHB.IZ data is a Simple Features (sf) object containing the spatial polygon informa-
tion for the set of 271 Intermediate Zones (IZ), that make up of the Greater Glasgow and
Clyde health board in Scotland (Figure 1).

+

−

 GGHB.IZ

5 km
5 mi

GGHB.IZ

Leaflet | © OpenStreetMap contributors © CARTO

Figure 1: Greater Glasgow and Clyde health board represented by 271 Intermediate Zones

0.1.1 Maipulating and visualizing areal data

Let’s start by loading useful libraries:

library(dplyr)
library(INLA)
library(ggplot2)

2

library(patchwork)
library(inlabru)
library(mapview)
library(sf)

load some libraries to generate nice map plots
library(scico)

The sf package allows us to work with vector data which is used to represent points, lines,
and polygons. It can also be used to read vector data stored as a shapefiles.

First, lets combine both data sets based on the Intermediate Zones (IZ) variable using the
merge function from base R, and select only one year of data

resp_cases <- merge(GGHB.IZ %>%
mutate(space = 1:dim(GGHB.IZ)[1]),

pollutionhealthdata, by = "IZ")%>%
dplyr::filter(year == 2007)

In epidemiology, disease risk is usually estimated using Standardized Mortality Ratios
(SMR). The SMR for a given spatial areal unit 𝑖 is defined as the ratio between the observed
(𝑌𝑖) and expected (𝐸𝑖) number of cases:

𝑆𝑀𝑅𝑖 = 𝑌𝑖
𝐸𝑖

A value 𝑆𝑀𝑅 > 1 indicates that there are more observed cases than expected which
corresponds to a high risk area. On the other hand, if 𝑆𝑀𝑅 < 1 then there are fewer
observed cases than expected, suggesting a low risk area.

We can manipulate sf objects the same way we manipulate standard data frame objects
via the dplyr package. Lets use the pipeline command %>% and the mutate function to
calculate the yearly SMR values for each IZ:

resp_cases <- resp_cases %>%
mutate(SMR = observed/expected)

Nowwe use ggplot to visualize our data by adding a geom_sf layer and coloring it accord-
ing to our variable of interest (i.e., SMR).

ggplot()+
geom_sf(data=resp_cases,aes(fill=SMR))+
scale_fill_scico(palette = "roma")

3

55.7°N

55.8°N

55.9°N

56.0°N

4.8°W 4.6°W 4.4°W 4.2°W 4.0°W

SMR

0.3

0.6

0.9

1.2

1.5

As with the other types of spatial modelling, our goal is to observe and explain spatial vari-
ation in our data. Generally, we are aiming to produce a smoothed map which summarises
the spatial patterns we observe in our data.

0.1.2 Spatial neighbourhood structures

A key aspect of any spatial analysis is that observations closer together in space are likely
to have more in common than those further apart. This can lead us towards approaches
similar to those used in time series, where we consider the spatial closeness of our regions
in terms of a neighbourhood structure.

The function poly2nb() of the spdep package can be used to construct a list of neighbors
based on areas with contiguous boundaries (e.g., using Queen contiguity).

library(spdep)

W.nb <- poly2nb(GGHB.IZ,queen = TRUE)
W.nb

Neighbour list object:
Number of regions: 271
Number of nonzero links: 1424
Percentage nonzero weights: 1.938971
Average number of links: 5.254613
2 disjoint connected subgraphs

4

https://r-spatial.github.io/spdep/reference/poly2nb.html

plot(st_geometry(GGHB.IZ), border = "lightgray")
plot.nb(W.nb, st_geometry(GGHB.IZ), add = TRUE)

Note

You could use the snap argument within poly2nb to set a distance at which the dif-
ferent regions centroids are consider neighbours.

With this neighborhood matrix, we can then fit a conditional autoregressive (CAR) model.
One of the most popular CAR approaches to model spatial correlation is the Besag model
a.k.a. Intrinsic Conditional Autoregressive (ICAR) model.

The conditional distribution for 𝑢𝑖 given u−𝑖 = (𝑢1, … , 𝑢𝑖−1, 𝑢𝑖+1, … , 𝑢𝑛)𝑇 is

𝑢𝑖|u−𝑖 ∼ 𝑁 (1
𝑑𝑖

∑
𝑗∼𝑖

𝑢𝑗,
1

𝑑𝑖𝜏𝑢
)

where 𝜏𝑢 is the precision parameter, 𝑗 ∼ 𝑖 denotes that 𝑖 and 𝑗 are neighbors, and 𝑑𝑖 is
the number of neighbors. Thus, themean of𝑢𝑖 is equivalent to the themean of the effects
over all neighbours, and the precision is proportional to the number of neighbors. The joint
distribution is given by:

u|𝜏𝑢 ∼ 𝑁 (0, 1
𝜏𝑢

𝑄−1) ,

5

Where 𝑄 denotes the structure matrix defined as

𝑄𝑖,𝑗 =
⎧{
⎨{⎩

𝑑𝑖, 𝑖 = 𝑗
−1, 𝑖 ∼ 𝑗
0, otherwise

This structure matrix directly defines the neighbourhood structure and is sparse. We can
compute the adjacency matrix using the function nb2mat() in the spdep library. Then
convert the adjacency matrix into the precision matrixQ of the CAR model as follows:

library(spdep)
R <- nb2mat(W.nb, style = "B", zero.policy = TRUE)
diag = apply(R,1,sum)
Q = -R
diag(Q) = diag

The ICAR model accounts only for spatially structured variability and does not include a
limiting case where no spatial structure is present. Therefore, it is typically combined with
an additional unstructured random effect 𝑧𝑖|𝜏𝑧 ∼ 𝑁(0, 𝜏−1

𝑧) . The resulting model 𝑣𝑖 =
𝑢𝑖+𝑧𝑖 is knownas theBesag-York-Molliémodel (BYM)which is an extension to the intrinsic
CAR model that contains an i.i.d. model component.

0.1.3 Fitting an ICAR model in inlabru

We fit a first model to the data where we consider a Poisson model for the observed
cases.

Stage 1Model for the response

𝑦𝑖|𝜂𝑖 ∼ Poisson(𝐸𝑖𝜆𝑖)

where 𝐸𝑖 are the expected cases for area 𝑖.
Stage 2 Latent field model

𝜂𝑖 = log(𝜆𝑖) = 𝛽0 + 𝑢𝑖 + 𝑧𝑖

where

• 𝛽0 is a common intercept
• u = (𝑢1, … , 𝑢𝑘) is a conditional Autoregressive model (CAR) with precision matrix

𝜏𝑢Q
• z = (𝑧1, … , 𝑧𝑘) is an unstructured random effect with precision 𝜏𝑧

Stage 3 Hyperparameters

The hyperparameters of the model are 𝜏𝑢 and 𝜏𝑧

NOTE In this case the linear predictor 𝜂 consists of three components!!

Task

Fit the above model in using inlabru by completing the following code:

6

cmp = ~ Intercept(1) + space(...) + iid(...)

formula = ...

lik = bru_obs(formula = formula,
family = ...,
E = ...,
data = ...)

fit = bru(cmp, lik)

Answer

cmp = ~ Intercept(1) + space(space, model = "besag", graph = Q) + iid(space, model = "iid")

formula = observed ~ Intercept + space + iid

lik = bru_obs(formula = formula,
family = "poisson",
E = expected,
data = resp_cases)

fit = bru(cmp, lik)

After fitting the model we want to extract results.

Question

1. What is the estimated value for 𝛽0? __________________

2. Look at the estimated values of the hyperparameters using
fit$summary.hyperpar , which of the two spatial components (structured
or unstructured) explains more of the variability in the counts?

• (A) structured

• (B) unstructured

0.1.4 Areal model predictions

We now look at the predictions over space.

Task

Complete the code below to produce prediction of the linear predictor 𝜂𝑖 and of the
risk 𝜆𝑖 and of the expected cases 𝐸𝑖 exp(𝜆𝑖) over the whole space of interest. Then
plot the mean and sd of the resulting surfaces.

7

pred = predict(fit, resp_cases, ~data.frame(log_risk = ...,
risk = exp(...),
cases = ...
),

n.samples = 1000)

See Solution

produce predictions
pred = predict(fit,

resp_cases,
~data.frame(log_risk = Intercept + space,

risk = exp(Intercept + space),
cases = expected * exp(Intercept + space)),

n.samples = 1000)

plot the predictions

p1 = ggplot() +
geom_sf(data = pred$log_risk, aes(fill = mean)) + scale_fill_scico(direction = -1) +
ggtitle("mean log risk")

p2 = ggplot() +
geom_sf(data = pred$log_risk, aes(fill = sd)) + scale_fill_scico(direction = -1) +
ggtitle("sd log risk")

p3 = ggplot() +
geom_sf(data = pred$risk, aes(fill = mean)) + scale_fill_scico(direction = -1) +
ggtitle("mean risk")

p4 = ggplot() +
geom_sf(data = pred$risk, aes(fill = sd)) +
scale_fill_scico(direction = -1) +
ggtitle("sd risk")

p5 = ggplot() + geom_sf(data = pred$cases, aes(fill = mean)) + scale_fill_scico(direction = -1)+
ggtitle("mean expected counts")

p6 = ggplot() + geom_sf(data = pred$cases, aes(fill = sd)) + scale_fill_scico(direction = -1)+
ggtitle("sd expected counts")

p1 + p2 + p3 + p4 +p5 + p6 + plot_layout(ncol=2)

8

55.7°N
55.8°N
55.9°N
56.0°N

4.8°W4.6°W4.4°W4.2°W4.0°W

mean

−1.0

−0.5

0.0

mean log risk

55.7°N
55.8°N
55.9°N
56.0°N

4.8°W4.6°W4.4°W4.2°W4.0°W

sd

0.125

0.150

0.175

0.200
sd log risk

55.7°N
55.8°N
55.9°N
56.0°N

4.8°W4.6°W4.4°W4.2°W4.0°W

mean

0.4

0.6

0.8

1.0

1.2

1.4mean risk

55.7°N
55.8°N
55.9°N
56.0°N

4.8°W4.6°W4.4°W4.2°W4.0°W

sd

0.10

0.15

0.20

sd risk

55.7°N
55.8°N
55.9°N
56.0°N

4.8°W4.6°W4.4°W4.2°W4.0°W

mean

40

80

120

160mean expected counts

55.7°N
55.8°N
55.9°N
56.0°N

4.8°W4.6°W4.4°W4.2°W4.0°W

sd

5

10

15

20

sd expected counts

Finally we want to compare our observations 𝑦𝑖 with the predicted means of the Poisson
distribution 𝐸𝑖 exp(𝜆𝑖)

pred$cases %>% ggplot() + geom_point(aes(observed, mean)) +
geom_errorbar(aes(observed, ymin = q0.025, ymax = q0.975)) +
geom_abline(intercept = 0, slope = 1)

50

100

150

200

50 100 150 200
observed

m
ea

n

Herewe are predicting themean of counts, not the counts. Predicting the counts is beyond
the scope of this short course but you can check the supplementary material below.

9

Supplementary Material

Posterior predictive distributions, i.e.,𝜋(𝑦new
𝑖 |y) are of interest inmany applied prob-

lems. The bru() function does not return predictive densities. In the previous step
we have computed predictions for the expected counts 𝜋(𝐸𝑖𝜆𝑖|y).
The predictive distribution is then:

𝜋(𝑦new
𝑖 |y) = ∫ 𝜋(𝑦𝑖|𝐸𝑖𝜆𝑖)𝜋(𝐸𝑖𝜆𝑖|y) 𝑑𝐸𝑖𝜆𝑖

where, in our case, 𝜋(𝑦𝑖|𝐸𝑖𝜆𝑖) is Poisson withmean𝐸𝑖𝜆𝑖. We can achieve this using
the following algorithm:

1. Simulate 𝑛 replicates of 𝑔𝑘 = 𝐸𝑖𝜆𝑖 for 𝑘 = 1, … , 𝑛 using the function
generate()which takes the same input as predict()

2. For each of the 𝑘 replicates simulate a new value 𝑦𝑛𝑒𝑤
𝑖 using the function

rpois()
3. Summarise the 𝑛 samples of 𝑦𝑛𝑒𝑤

𝑖 using, for example the mean and the 0.025
and 0.975 quantiles.

4.

simulate 1000 realizations of E_i\lambda_i
expected_counts = generate(fit, resp_cases,

~ expected * exp(Intercept + space),
n.samples = 1000)

simulate poisson data
aa = rpois(271*1000, lambda = as.vector(expected_counts))
sim_counts = matrix(aa, 271, 1000)

summarise the samples with posterior means and quantiles
pred_counts = data.frame(observed = resp_cases$observed,

m = apply(sim_counts,1,mean),
q1 = apply(sim_counts,1,quantile, 0.025),
q2 = apply(sim_counts,1,quantile, 0.975),
vv = apply(sim_counts,1,var)
)

Plot the observations against the predicted new counts and the predicted expected counts

ggplot() +
geom_point(data = pred_counts, aes(observed, m, color = "Pred_obs")) +
geom_errorbar(data = pred_counts, aes(observed, ymin = q1, ymax = q2, color = "Pred_obs")) +
geom_point(data = pred$cases, aes(observed, mean, color = "Pred_means")) +
geom_errorbar(data = pred$cases, aes(observed, ymin = q0.025, ymax = q0.975, color = "Pred_means")) +

geom_abline(intercept = 0, slope =1)

10

50

100

150

200

50 100 150 200
observed

m

colour

Pred_means

Pred_obs

0 Geostatistical data

In this practical we are going to fit a geostatistical model. We will:

• Explore tools for geostatistical spatial data wrangling and visualization.

• Learn how to fit a geostatistical model in inlabru

• Learn how to add spatial covariates to the model

• Learn how to do predictions

Geostatistical data are the most common form of spatial data found in environmental
setting. In these data we regularly take measurements of a spatial ecological or environ-
mental process at a set of fixed locations. This could be data from transects (e.g, where
the height of trees is recorded), samples taken across a region (e.g., water depth in a lake)
or frommonitoring stations as part of a network (e.g., air pollution). In each of these cases,
our goal is to estimate the value of our variable across the entire space.

Let 𝐷 be our two-dimensional region of interest. In principle, there are infinite locations
within𝐷, each ofwhich can be representedbymathematical coordinates (e.g., latitude and
longitude). We then can identify any individual location as 𝑠𝑖 = (𝑥𝑖, 𝑦𝑖), where 𝑥𝑖 and 𝑦𝑖
are their coordinates.

We can treat our variable of interest as a random variable, 𝑍 which can be observed at any
location as 𝑍(s𝑖).
Our geostatistical process can therefore be written as:

{𝑍(s); s ∈ 𝐷}

In practice, our data are observed at a finite number of locations, 𝑚, and can be denoted
as:

11

𝑧 = {𝑧(s1), … 𝑧(s𝑚)}

In the next example, we will explore data on the Pacific Cod (Gadus macrocephalus) from
a trawl survey in Queen Charlotte Sound. The pcod dataset is available from the sdmTMB
package and contains the presence/absence records of the Pacific Cod during each survey.
The qcs_grid data contain the depth values stored as 2 × 2 km grid for Queen Charlotte
Sound.

0.2.1 Exploring and visualizing species distribution data

The dataset contains presence/absence data from 2003 to 2017. In this practical we only
consider year 2003. We first load the dataset and select the year of interest:

library(sdmTMB)

pcod_df = sdmTMB::pcod %>% filter(year==2003)
qcs_grid = sdmTMB::qcs_grid

Then, we create an sf object and assign the rough coordinate reference to it:

pcod_sf = st_as_sf(pcod_df, coords = c("lon","lat"), crs = 4326)
pcod_sf = st_transform(pcod_sf,

crs = "+proj=utm +zone=9 +datum=WGS84 +no_defs +type=crs +units=km")

We convert the covariate into a raster and assign the same coordinate reference:

library(terra)
depth_r <- rast(qcs_grid, type = "xyz")
crs(depth_r) <- crs(pcod_sf)

Finally we can plot our dataset. Note that to plot the raster we need to load also the
tidyterra library.

library(tidyterra)
ggplot()+
geom_spatraster(data=depth_r$depth)+
geom_sf(data=pcod_sf,aes(color=factor(present))) +
scale_color_manual(name="Occupancy status for the Pacific Cod",

values = c("black","orange"),
labels= c("Absence","Presence"))+

scale_fill_scico(name = "Depth",
palette = "nuuk",
na.value = "transparent") + xlab("") + ylab("")

12

51.0°N

51.5°N

52.0°N

52.5°N

131.0°W130.5°W130.0°W129.5°W129.0°W128.5°W128.0°W

Depth

200

400

600

800

Occupancy status for the Pacific Cod

Absence

Presence

0.2.2 Fitting a spatial geostatistical species distribution model

We first fit a simple model where we consider the observation as Bernoulli and where the
linear predictor contains only one intercept and the GR field defined through the SPDE
approach. The model is defined as:

Stage 1Model for the response

𝑦(𝑠)|𝜂(𝑠) ∼ Binom(1, 𝑝(𝑠))
Stage 2 Latent field model

𝜂(𝑠) = logit(𝑝(𝑠)) = 𝛽0 + 𝜔(𝑠)

with

𝜔(𝑠) ∼ GF with range 𝜌 and maginal variance 𝜎2

Stage 3 Hyperparameters

The hyperparameters of the model are 𝜌 and 𝜎
NOTE In this case the linear predictor 𝜂 consists of two components!!

0.2.3 The workflow

When fitting a geostatistical model we need to fulfill the following tasks:

1. Build the mesh
2. Define the SPDE representation of the spatial GF. This includes defining the priors

for the range and sd of the spatial GF
3. Define the components of the linear predictor. This includes the spatial GF and all

eventual covariates

13

4. Define the observation model using the bru_obs() function
5. Run the model using the bru() function

0.2.3.1 Step 1. Building the mesh The first task, when dealing with geostatistical mod-
els in inlabru is to build the mesh that covers the area of interest. For this purpose we
use the function fm_mesh_2d.

Oneway to build themesh is to start from the locationswherewehave observations, these
are contained in the dataset pcod_sf

mesh = fm_mesh_2d(loc = pcod_sf, # Build the mesh
cutoff = 2,
max.edge = c(7,20), # The largest allowed triangle edge length.
offset = c(5,50)) # The automatic extension distance

ggplot() + gg(mesh) +
geom_sf(data= pcod_sf, aes(color = factor(present))) +
xlab("") + ylab("")

50.5°N

51.0°N

51.5°N

52.0°N

52.5°N

53.0°N

132°W 131°W 130°W 129°W 128°W 127°W

factor(present)

0

1

Task

Look at the documentation for the fm_mesh_2d function typing

?fm_mesh_2d

14

Experiment with the different options and create different meshes (see here for fur-
ther details on mesh construction).
The rule of thumb is that your mesh should be:

• fine enough to well represent the spatial variability of your process, but not
too fine in order to avoid computation burden

• the triangles should be regular, avoid long and thin triangles.
• The mesh should contain a buffer around your area of interest (this is what is
defined in the offset option) in order to avoid boundary artifact in the esti-
mated variance.

0.2.3.2 Step 2. Define the SPDE representation of the spatial GF To define the SPDE
representation of the spatial GF we use the function inla.spde2.pcmatern.

This takes as input the mesh we have defined and the PC-priors definition for 𝜌 and 𝜎 (the
range and the marginal standard deviation of the field).

PC priors Gaussian Random field are defined in (Fuglstad et al. 2018). From a practical
perspective for the range 𝜌 you need to define two parameters 𝜌0 and 𝑝𝜌 such that you
believe it is reasonable that

𝑃(𝜌 < 𝜌0) = 𝑝𝜌

while for the marginal variance 𝜎 you need to define two parameters 𝜎0 and 𝑝𝜎 such that
you believe it is reasonable that

𝑃(𝜎 > 𝜎0) = 𝑝𝜎
Here are some alternatives for defining priors for our model

spde_model1 = inla.spde2.pcmatern(mesh,
prior.sigma = c(.1, 0.5),
prior.range = c(30, 0.5))

spde_model2 = inla.spde2.pcmatern(mesh,
prior.sigma = c(10, 0.5),
prior.range = c(1000, 0.5))

spde_model3 = inla.spde2.pcmatern(mesh,
prior.sigma = c(1, 0.5),
prior.range = c(100, 0.5))

Question

Considering the pcod_sf spatial extension and type of the data, which of the previ-
ous choices is more reasonable?
Remember that a prior should be reasonable..but the model should not totally depend
on it.
Take hint
You can use the summary() function to check the coordinate range of an sf object.

• (A) spde_model1

• (B) spde_model2

15

https://ecol-stats.github.io/Spatial_Data_Analysis/#building-a-mesh-with-fmesher

• (C) spde_model3

0.2.3.3 Step 3. Define the components of the linear predictor We have now defined
a mesh and a SPDE representation of the spatial GF. We now need to define the model
components:

cmp = ~ Intercept(1) + space(geometry, model = spde_model3)

NOTE since the data frame we use (pcod_sf) is an sf object the input in the space()
component is the geometry of the dataset.

0.2.3.4 Step 4. Define the observation model Our data are Bernoulli distributed so we
can define the observation model as:

formula = present ~ Intercept + space

lik = bru_obs(formula = formula,
data = pcod_sf,
family = "binomial")

0.2.3.5 Step 5. Run the model Finally we are ready to run the model

fit1 = bru(cmp,lik)

0.2.4 Model results

0.2.4.1 Hyperparameters

Task

What are the posterior for the range 𝜌 and the standard deviation 𝜎? Plot the poste-
rior together with the prior for both parameters.
Take hint
The spde.posterior() can be used to calculate the posterior distribution of the
range and variance of a model’s SPDE component. (type ?spde.posterior for fur-
ther detials)
Click here to see the solution

Extract marginal for the range

library(patchwork)
spde.posterior(fit1, "space", what = "range") %>% plot() +
spde.posterior(fit1, "space", what = "log.variance") %>% plot()

0.2.5 Spatial prediction

We now want to extract the estimated posterior mean and sd of spatial GF. To do this we
first need todefine a grid of pointswherewewant to predict. Wedo this using the function
fm_pixel()which creates a regular grid of points covering the mesh

16

pxl = fm_pixels(mesh)

then compute the prediction for both the spatial GF and the linear predictor (spatial GF +
intercept)

preds = predict(fit1, pxl, ~data.frame(spatial = space,
total = Intercept + space))

Finally, we can plot the maps

ggplot() + geom_sf(data = preds$spatial,aes(color = mean)) +
scale_color_scico() +
ggtitle("Posterior mean") +

ggplot() + geom_sf(data = preds$spatial,aes(color = sd)) +
scale_color_scico() +
ggtitle("Posterior sd")

5600

5650

5700

5750

5800

5850

5900

300350400450500550600

mean

−2

−1

0

1

2

3

Posterior mean

5600

5650

5700

5750

5800

5850

5900

300350400450500550600

sd

2

3

Posterior sd

Note The posterior sd is lowest at the observation points. Note how the posterior sd is
inflated around the border, this is the “border effect” due to the SPDE representation.

0.2.6 An alternative model (including spatial covariates)

We now want to check if the depth covariate has an influence on the probability of pres-
ence. We do this in two different models

1. Model 1 The depth enters the model in a linear way. The linear predictor is then
defined as:

𝜂(𝑠) = logit(𝑝(𝑠)) = 𝛽0 + 𝜔(𝑠) + 𝛽1 depth(𝑠)
2. Model 1 The depth enters themodel in a non linear way. The linear predictor is then

defined as:

17

𝜂(𝑠) = logit(𝑝(𝑠)) = 𝛽0 + 𝜔(𝑠) + 𝑓(depth(𝑠))
where 𝑓(.) is a smooth function. We will use a RW2 model for this.

Task

Fit model 1. Define components, observation model and use the bru() function to
estimate the parameters.
Note Use the scaled version of the covariate stored in depth_r$depth_scaled.
What is the liner effect of depth on the logit probability?
Take hint
The pcod_sf object already contains the depth_scaled containing the squared
depth values at each location. However, inlabru also allows to specify a raster ob-
ject directly in the model components. If your raster contains multiple layers, then
de desired layer can be called using the $ symbol (e.g., my_raster$layer_1).
Click here to see the solution

cmp = ~ Intercept(1) + space(geometry, model = spde_model3) +
covariate(depth_r$depth_scaled, model = "linear")

formula = present ~ Intercept + space + covariate

lik = bru_obs(formula = formula,
data = pcod_sf,
family = "binomial")

fit2 = bru(cmp, lik)

We now want to fit Model 2 where we allow the effect of depth to be non-linear. To use
the RW2 model we need to group the values of depth into distinct classes. To do this we
use the function inla.group() which, by default, creates 20 groups. The we can fit the
model as usual

create the grouped variable
depth_r$depth_group = inla.group(values(depth_r$depth_scaled))

run the model
cmp = ~ Intercept(1) + space(geometry, model = spde_model3) +

covariate(depth_r$depth_group, model = "rw2")

formula = present ~ Intercept + space + covariate

lik = bru_obs(formula = formula,
data = pcod_sf,
family = "binomial")

fit3 = bru(cmp, lik)

plot the estimated effect of depth

18

fit3$summary.random$covariate %>%
ggplot() + geom_line(aes(ID,mean)) +

geom_ribbon(aes(ID,
ymin = `0.025quant`,
ymax = `0.975quant`),

alpha = 0.5)

−5

0

−3 −2 −1 0 1 2
ID

m
ea

n

Instead of predicting over a grid covering the whole mesh, we can limit our predictions to
the points where the covariate is defined. We can do this by defining a sf object using
coordinates in the object depth_r.

pxl1 = data.frame(crds(depth_r),
as.data.frame(depth_r$depth)) %>%

filter(!is.na(depth)) %>%
st_as_sf(coords = c("x","y")) %>% dplyr::select(-depth)

Task

Create a map of predicted probability from Model 3 by predicting prediction over
pxl1. You can use a inverse logit function defined as

inv_logit = function(x) (1+exp(-x))^(-1)

Take hint
The predict() function can take as input also functions of elements of the compo-
nents you want to consider
Click here to see the solution

19

pred3 = predict(fit3, pxl1, ~inv_logit(Intercept + space + covariate))

pred3 %>% ggplot() +
geom_sf(aes(color = mean)) +
scale_color_scico(direction = -1) +
ggtitle("Sample from the fitted model")

5650

5700

5750

5800

350 400 450 500 550

mean

0.25

0.50

0.75

Sample from the fitted model

0 Point process data

In this practical we are going to fit a log Gaussian Cox Proces (LGCP) model to point-
referenced data. We will:

• Learn how to fit a LGCP model in inlabru

• Learn how to add spatial covariates to the model

• Learn how to do predictions

In point processes we measure the locations where events occur (e.g. trees in a forest,
earthquakes) and the coordinates of such occurrences are our data. A spatial point process
is a random variable operating in continuous space, and we observe realisations of this
variable as point patterns across space.

Consider a fixed geographical region 𝐴. The set of locations at which events occur are de-
noted s = 𝑠1, … , 𝑠𝑛. We let 𝑁(𝐴) be the random variable which represents the number
of events in region 𝐴.

We typically assume that a spatial point pattern is generated by an unique point process
over the whole study area. This means that the delimitation of the study area will affect
the observed point patters.

We can define the intensity of a point process as the expected number of events per unit
area. This can also be thought of as a measure of the density of our points. In some cases,

20

the intensity will be constant over space (homogeneous), while in other cases it can vary
by location (inhomogeneous or heterogenous).

In the next example we will be looking at the location where forest fires occurred in the
Castilla-La Mancha region of Spain between 1998 and 2007.

0.3.1 Point-referenced data visualization

In this practical we consider the data clmfires in the spatstat library.

This dataset is a record of forest fires in the Castilla-La Mancha region of Spain between
1998 and 2007. This region is approximately 400 by 400 kilometres. The coordinates are
recorded in kilometres. For more info about the data you can type:

?clmfires

Wefirst read the data and transform them into an sf object. We also create a polygon that
represents the border of the Castilla-La Mancha region. We select the data for year 2004
and only those fires caused by lightning.

data("clmfires")
pp = st_as_sf(as.data.frame(clmfires) %>%

dplyr::mutate(x = x,
y = y),

coords = c("x","y"),
crs = NA) %>%

dplyr::filter(cause == "lightning",
year(date) == 2004)

poly = as.data.frame(clmfires$window$bdry[[1]]) %>%
mutate(ID = 1)

region = poly %>%
st_as_sf(coords = c("x", "y"), crs = NA) %>%
dplyr::group_by(ID) %>%
summarise(geometry = st_combine(geometry)) %>%
st_cast("POLYGON")

ggplot() + geom_sf(data = region, alpha = 0) + geom_sf(data = pp)

21

 50

100

150

200

250

300

350

400

 0 100 200 300 400

Figure 2: Distribution of the observed forest fires caused by lightning in Castilla-LaMancha
in 2004

The library spatstat contains also some covariates that can help explain the fires distri-
bution. We can a raster for the scaled values of elevation using the following code:

elev_raster = rast(clmfires.extra[[2]]$elevation)
elev_raster = scale(elev_raster)

Task

Using tidyterra and ggplot, produce a map of the elevation profile in La Mancha
region and overlay the spatial point pattern of the fire locations. Use an appropriate
colouring scheme for the elevation values. Do you see any pattern?
Take hint
You can use the geom_spatraster() to add a raster layer to a ggplot object. Fur-
thermore the scico library contains a nice range of coloring palettes you can choose,
type scico_palette_show() to see the color palettes that are available.
Click here to see the solution

library(ggplot2)
library(tidyterra)
library(scico)

ggplot() +
geom_spatraster(data = elev_raster) +
geom_sf(data = pp) + scale_fill_scico()

22

 0

 100

 200

 300

 400

 0 100 200 300 400

value

−2.5

0.0

2.5

0.3.2 Workflow for Fitting a LGCP model

The procedure for fitting a point processmodel in inlabru, specifically a log-Gaussian Cox
process, follows a similar workflow to that of a geostatistical model, these are:

1. Build the mesh
2. Define the SPDE representation of the spatial GF. This includes defining the priors

for the range and sd of the spatial GF
3. Define the components of the linear predictor. This includes the spatial GF and all

eventual covariates.
4. Define the observational model
5. Run the Model

0.3.2.1 Step 1. Building the mesh for a LGCP First, we need to create the mesh used
to approximate the randomfield. When analyzing point patterns, mesh nodes (integration
points) are not typically placed at point locations. Instead, a mesh is created using the
fm_mesh_2d()function from the fmesher library with boundary being our study area.

Key parameters in mesh construction include: max.edge for maximum triangle edge
lengths, offset for inner and outer extensions (to prevent edge effects), and cutoff to
avoid overly small triangles in clustered areas.

23

Note

General guidelines for creating the mesh

1. Create triangulation meshes with fm_mesh_2d()
2. Move undesired boundary effects away from the domain of interest by extend-

ing to a smooth external boundary
3. Use a coarser resolution in the extension to reduce computational cost

(max.edge=c(inner, outer))
4. Use a fine resolution (subject to available computational resources) for the do-

main of interest (inner correlation range) and filter out small input point clus-
ters (0 < cutoff < inner)

5. Coastlines and similar can be added to the domain specification in
fm_mesh_2d() through the boundary argument.

mesh options

mesh <- fm_mesh_2d(boundary = region,
max.edge = c(5, 10),
cutoff = 4, crs = NA)

ggplot() + gg(mesh) + geom_sf(data=pp)

 0

 100

 200

 300

 400

 0 100 200 300 400
x

y

0.3.2.2 Step 2. Defining the SPDEmodel We can now define our SPDEmodel using the
inla.spde2.pcmatern function. To help us chose some sensible model parameters it is
often useful to consider the spatial extension of our study.

st_area(region)

24

[1] 79354.67

We can use PC-priors for the range 𝜌 and the standard deviation𝜎 of theMatérn process

• Define the prior for the range prior.range = (range0,Prange) Prob(𝜌 <
𝜌0) = 𝑝𝜌

• Define the prior for the range prior.sigma = (sigma0,Psigma) Prob(𝜎 >
𝜎0) = 𝑝𝜎

Question

Take a look at the code below and select which of the following statements about
the specified Matérn PC priors are true.

spde_model = inla.spde2.pcmatern(mesh,
prior.sigma = c(1, 0.5),
prior.range = c(100, 0.5))

• (A) there is probability of 0.5 that the spatial range is greater or equal than
100

• (B) the probability that the spatial range is smaller than 50 is 0.5

• (C) the probability that the marginal standard deviation is smaller than 1 is
0.5

• (D) there is probability of 0.5 that the marginal standard deviation is at least
equal or greater 1

0.3.2.3 Step 3. Defining model components Stage 1Model for the response

The total number of points in the study region is a Poisson random variable with a spatially
varying intensity and log-likelihood given by :

𝑙(𝛽; 𝑠) =
𝑚

∑
𝑖=1

log[𝜆(𝑠𝑖)] − ∫
𝐴

𝜆(𝑠)𝑑𝑠.

The integral in this expression can be interpreted as the expected number of points in the
whole study region. However, the integral of the intensity function has no close form solu-
tion and thus we need to approximate it using numerical integration. inlabru has imple-
mented the fm_int function to create integration schemes that are especially well suited
to integrating the intensity in models with an SPDE effect. We strongly recommend that
users use these integration schemes in this context. See ?fm_int for more information.

build integration scheme
ips = fm_int(mesh,

samplers = region)

Now, for a point process models, the spatial covariates (i.e., the elevation raster) have to
be also available at both data-points and quadrature locations. We can check this using the
eval_spatial function from inlabru :

25

eval_spatial(elev_raster,pp) %>% is.na() %>% any()

[1] FALSE

eval_spatial(elev_raster,ips) %>% is.na() %>% any()

[1] TRUE

Here, we notice that there is a single point that for which elevation values are missing (see
Figure 3 the red point that lies outside the raster extension).

 0

 100

 200

 300

 400

 0 100 200 300 400

value

−2.5

0.0

2.5

Figure 3: Integration scheme for numerical approximation of the stochastic integral in La
Mancha Region

To solve this, we can increase the raster extension so it covers all both data-points and
quadrature locations as well. Then, we can use the bru_fill_missing() function to in-
put the missing values with the nearest-available-value/ We can achieve this using the fol-
lowing code:

Extend raster ext by 5 % of the original raster
re <- extend(elev_raster, ext(elev_raster)*1.05)
Convert to an sf spatial object
re_df <- re %>% stars::st_as_stars() %>% st_as_sf(na.rm=F)
fill in missing values using the original raster
re_df$lyr.1 <- bru_fill_missing(elev_raster,re_df,re_df$lyr.1)
rasterize

26

elev_rast_p <- stars::st_rasterize(re_df) %>% rast()

 0

 100

 200

 300

 400

 0 100 200 300 400

value

−2.5

0.0

2.5

Stage 2 Latent field model

Wewill model the fire locations as a point processwhose intensity function𝜆(𝑠) is additive
on the log-scale:

𝜂(𝑠) = log 𝜆(𝑠) = 𝛽0 + 𝛽1 elevation(𝑠) + 𝜔(𝑠),

Here, 𝜔(𝑠) is the Matérn Gaussian field capturing the spatial structure of all the locations
where fires have occurred (these locations are assumed to be independent given the Gaus-
sian field).

Stage 3 Hyperparameters

The hyperparameters of the model are 𝜌 and 𝜎 corresponding to

𝜔(𝑠) ∼ GF with range 𝜌 and maginal variance 𝜎2

NOTE In this case the linear predictor 𝜂(𝑠) consists of three components.

After the mesh and a SPDE representation of the spatial GF have been defined, the model
components can be specified using the formula syntax (recall that this allows users to
choose meaningful names for model components).

27

cmp_lgcp <- geometry ~ Intercept(1) +
elev(elev_rast_p, model = "linear") +
space(geometry, model = spde_model)

Recall that the labels Intercept, elev (elevation effect) and space are used to name the
components of the model but they equally well could be something else.

Now, notice that we have called the elev_rast_p raster data within the elevation com-
ponent. Recall that inlabruprovides support for sf and terra data structures, allowing
it to extract information from spatial data objects. This is particularly relevant for LGCP,
as spatial covariates (e.g., the elevation raster) must be available across the whole study
area.

formula = geometry ~ Intercept + elev + space

Recall that in an sf object, the geo-referenced information of our points is stored in the
geometry column, and hence we specify this as our response

0.3.2.4 Step 4. Defining th observational model inlabru has support for latent Gaus-
sian Cox processes through the cp likelihood family. We just need to supply the sf object
as our data and the integration scheme ips:

lik = bru_obs(formula = formula,
data = pp,
family = "cp",
ips = ips)

Note

inlabru supports a shortcut for defining the integration points using the domain
and samplers argument of like(). This domain argument expects a list of named
domainswith inputs that are then internally passed to fm_int() to build the integra-
tion scheme. The samplers argument is used to define subsets of the domain over
which the integral should be computed. An equivalent way to define the samemodel
as above is:

lik = bru_obs(formula = formula,
data = pp,
family = "cp",
domain = list(geometry = mesh),
samplers = region)

0.3.3 Step 5. Run the model

Finally, we can fit the model as usual

fit_lgcp = bru(cmp_lgcp,lik)

Posterior summaries of fixed effects and hyper parameters can be obtained using the
summary() function.

28

mean sd 0.025quant 0.5quant 0.975quant mode

-7.49 0.85 -9.25 -7.48 -5.83 -7.48
-0.07 0.17 -0.41 -0.07 0.26 -0.07

132.90 37.50 76.98 127.05 223.21 115.20
1.76 0.35 1.19 1.72 2.56 1.63

summary(fit_lgcp)

0.3.4 Model predictions

Model predictions can be computed using the predict function by supplying the coordi-
nates where the covariate is defined. We can do this by defining a sf object using coordi-
nates in our original raster data (wewill crop the extension to that of LaMancha Region).

elev_crop <- terra::crop(x = elev_raster,y = region,mask=TRUE)

pxl1 = data.frame(crds(elev_crop),
as.data.frame(elev_crop$lyr.1)) %>%

filter(!is.na(lyr.1)) %>%
st_as_sf(coords = c("x","y")) %>%
dplyr::select(-lyr.1)

The formula object for the prediction can be a generic R expression that references model
components using the user-defined names.

The predict()method returns an object in the same data format as was used in the pre-
dict call which, in this case, is an sf points object.

Support for plotting sf data objects is available in the ggplot2 package.

29

1 Model predictions

 50
100
150
200
250
300
350
400

y

 0 100 200 300 400
x

log(λ)

−8

−6

−4

 50
100
150
200
250
300
350
400

y

 0 100 200 300 400
x

stdev − log(λ)

0.4

0.8

1.2

1.6

 50
100
150
200
250
300
350
400

y

 0 100 200 300 400
x

λ

0.01

0.02

0.03

 50
100
150
200
250
300
350
400

y

 0 100 200 300 400
x

Spatial effect

−2

0

2

4

2 R Code

lgcp_pred <- predict(
fit_lgcp,
pxl1,
~ data.frame(
lambda = exp(Intercept + elev + space), # intensity
loglambda = Intercept + elev +space, #log-intensity
GF = space # matern field

)
)

predicted log intensity
ggplot() + gg(lgcp_pred$loglambda, geom = "tile")
standard deviation of the predicted log intensity
ggplot() + gg(lgcp_pred$loglambda, geom = "tile",aes(fill=sd))
predicted intensity
ggplot() + gg(lgcp_pred$lambda, geom = "tile")
spatial field
ggplot() + gg(lgcp_pred$GF, geom = "tile")

30

	Areal (lattice) data
	Maipulating and visualizing areal data
	Spatial neighbourhood structures
	Fitting an ICAR model in inlabru
	Areal model predictions

	Geostatistical data
	Exploring and visualizing species distribution data
	Fitting a spatial geostatistical species distribution model
	The workflow
	Model results
	Spatial prediction
	An alternative model (including spatial covariates)

	Point process data
	Point-referenced data visualization
	Workflow for Fitting a LGCP model
	Step 5. Run the model
	Model predictions

	Model predictions
	R Code

