
PRACTICAL 1

Aim of this practical:

In this first practical we are going to look at some simple models

1. A Gaussian model with simulated data

2. A Linear mixed model

3. A GLM and GAM

We are going to learn:

• How to fit some commonly used models with inlabru

• How to explore the results

• How to get predictions for missing data points

0 Linear Model

In this practical we will:

• Fit a simple linear regression with inlabru
• Fit a linear regression with discrete covariates and interactions

Start by loading useful libraries:

library(dplyr)
library(INLA)
library(ggplot2)
library(patchwork)
library(inlabru)
load some libraries to generate nice plots
library(scico)

As our first example we consider a simple linear regression model with Gaussian observa-
tions

𝑦𝑖 ∼ 𝒩(𝜇𝑖, 𝜎2), 𝑖 = 1, … , 𝑁

where 𝜎2 is the observation error, and the mean parameter 𝜇𝑖 is linked to the linear pre-
dictor (𝜂𝑖) through an identity function:

𝜂𝑖 = 𝜇𝑖 = 𝛽0 + 𝛽1𝑥𝑖

where 𝑥𝑖 is a covariate and 𝛽0, 𝛽1 are parameters to be estimated. We assign 𝛽0 and 𝛽1 a
vague Gaussian prior.

To finalize the Bayesian model we assign a Gamma(𝑎, 𝑏) prior to the precision parameter
𝜏 = 1/𝜎2 and two independent Gaussian priors with mean 0 and precision 𝜏𝛽 to the re-
gression parameters 𝛽0 and 𝛽1 (we will use the default prior settings in INLA for now).

1

Question

What is the dimension of the hyperparameter vector and latent Gaussian field?
Answer
The hyperparameter vector has dimension 1,𝜃𝜃𝜃 = (𝜏)while the latent Gaussian field
𝑢𝑢𝑢 = (𝛽0, 𝛽1) has dimension 2, 0 mean, and sparse precision matrix:

𝑄𝑄𝑄 = [𝜏𝛽0
0

0 𝜏𝛽1
]

Note that, since 𝛽0 and 𝛽1 are fixed effects, the precision parameters 𝜏𝛽0
and 𝜏𝛽1

are fixed.

Note

We can write the linear predictor vector𝜂𝜂𝜂 = (𝜂1, … , 𝜂𝑁) as

𝜂𝜂𝜂 = 𝐴𝐴𝐴𝑢𝑢𝑢 = 𝐴𝐴𝐴1𝑢𝑢𝑢1 + 𝐴𝐴𝐴2𝑢𝑢𝑢2 =
⎡⎢⎢
⎣

1
1
⋮
1

⎤⎥⎥
⎦

𝛽0 +
⎡⎢⎢
⎣

𝑥1
𝑥2
⋮

𝑥𝑁

⎤⎥⎥
⎦

𝛽1

Our linear predictor consists then of two components: an intercept and a slope.

0.1.1 Simulate example data

We fix the model parameters 𝛽0, 𝛽1 and the hyperparameter 𝜏𝑦 to a given value and simu-
late the data accordingly using the code below. The simulated response and covariate data
are then saved in a data.frame object.

set seed for reproducibility
set.seed(1234)

beta = c(2,0.5)
sd_error = 0.1

n = 100
x = rnorm(n)
y = beta[1] + beta[2] * x + rnorm(n, sd = sd_error)

df = data.frame(y = y, x = x)

0.1.2 Fitting a linear regression model with inlabru

Step1: Defining model components

The first step is to define the two model components: The intercept and the linear covari-
ate effect.

2

Task

Define an object called cmp that includes and (i) intercept beta_0 and (ii) a covariate
x linear effect beta_1.
Take hint
The cmp object is here used to define model components. We can give them any
useful nameswe like, in this case, beta_0 andbeta_1. You can remove the automatic
intercept construction by adding a -1 in the components
Click here to see the solution

cmp = ~ -1 + beta_0(1) + beta_1(x, model = "linear")

Note

inlabru has automatic intercept that can be called by typing Intercept() , which
is one of inlabru special names and it is used to define a global intercept, e.g.

cmp = ~ Intercept(1) + beta_1(x, model = "linear")

Step 2: Build the observation model

The next step is to construct the observation model by defining the model likelihood. The
most important inputs here are the formula, the family and the data.

Task

Define a linear predictor eta using the component labels you have defined on the
previous task.
Take hint
The eta object defines how the components should be combined in order to define
the model predictor.
Click here to see the solution

eta = y ~ beta_0 + beta_1

The likelihood for the observational model is defined using the bru_obs() function.

Task

Define the observational model likelihood in an object called lik using the
bru_obs() function.
Take hint
The bru_obs is expecting three arguments:

• The linear predictor etawe defined in the previous task
• The data likelihood (this can be specified by setting family = "gaussian")
• The data set df

Click here to see the solution

lik = bru_obs(formula = eta,
family = "gaussian",
data = df)

3

Step 3: Fit the model

We fit the model using the bru() functions which takes as input the components and the
observation model:

fit.lm = bru(cmp, lik)

Step 4: Extract results

There are several ways to extract and examine the results of a fitted inlabru object.

The most natural place to start is to use the summary() which gives access to some basic
information about model fit and estimates

summary(fit.lm)
inlabru version: 2.13.0.9016
INLA version: 25.08.21-1
Components:
Latent components:
beta_0: main = linear(1)
beta_1: main = linear(x)
Observation models:
Family: 'gaussian'
Tag: <No tag>
Data class: 'data.frame'
Response class: 'numeric'
Predictor: y ~ beta_0 + beta_1
Additive/Linear: TRUE/TRUE
Used components: effects[beta_0, beta_1], latent[]
Time used:
Pre = 0.48, Running = 0.264, Post = 0.229, Total = 0.973
Fixed effects:
mean sd 0.025quant 0.5quant 0.975quant mode kld
beta_0 2.004 0.01 1.983 2.004 2.024 2.004 0
beta_1 0.497 0.01 0.477 0.497 0.518 0.497 0
##
Model hyperparameters:
mean sd 0.025quant 0.5quant
Precision for the Gaussian observations 94.85 13.41 70.43 94.22
0.975quant mode
Precision for the Gaussian observations 122.92 92.96
##
Marginal log-Likelihood: 63.27
is computed
Posterior summaries for the linear predictor and the fitted values are computed
(Posterior marginals needs also 'control.compute=list(return.marginals.predictor=TRUE)')

We can see that both the intercept and slope and the error precision are correctly esti-
mated.

Another way, which gives access to more complicated (and useful) output is to use the
predict() function. Belowwe take thefittedbruobject and use thepredict() function
to produce predictions for 𝜇 given a new set of values for the model covariates or the
original values used for the model fit

4

new_data = data.frame(x = c(df$x, runif(10)),
y = c(df$y, rep(NA,10)))

pred = predict(fit.lm, new_data, ~ beta_0 + beta_1,
n.samples = 1000)

The predict function generate samples from the fitted model. In this case we set the
number of samples to 1000.

0 Plot

1.0

1.5

2.0

2.5

3.0

−2 −1 0 1 2
Covariate

O
bs

er
va

tio
ns

Figure 1: Data and 95% credible intervals

0 R Code

pred %>% ggplot() +
geom_point(aes(x,y), alpha = 0.3) +
geom_line(aes(x,mean)) +
geom_line(aes(x, q0.025), linetype = "dashed")+
geom_line(aes(x, q0.975), linetype = "dashed")+
xlab("Covariate") + ylab("Observations")

Task

Generate predictions for the linear predictor 𝜇 when the covariate has value 𝑥0 =
0.45.
What is the predicted value for 𝜇? And what is the uncertainty?
Take hint

5

You can create a newdata frame containing the newobservation𝑥0 and then use the
predict function.
Click here to see the solution

new_data = data.frame(x = 0.45)
pred = predict(fit.lm, new_data, ~ beta_0 + beta_1,

n.samples = 1000)
pred

x mean sd q0.025 q0.5 q0.975 median sd.mc_std_err
1 0.45 2.226927 0.01197734 2.202968 2.226631 2.250816 2.226631 0.0002707939
mean.mc_std_err

1 0.0003958832

You can see the predicted mean and sd by examining the produced pred object. In
this case the mean is 2.23 with sd ca 0.01. This gives a 95% CI ca [2.2, 2.25].

Note

Before we have produced a credible interval for the expected mean 𝜇 if we want to
produce a prediction interval for a new observation 𝑦 we need to add the uncertainty
that comes from the likelihood with precision 𝜏𝑦. To do this we can again use the
predict() function to compute a 95% prediction interval for 𝑦.

pred2 = predict(fit.lm, new_data,
formula = ~ {
mu = beta_0 + beta_1
sigma = sqrt(1/Precision_for_the_Gaussian_observations)
list(q1 = qnorm(0.025, mean = mu, sd = sigma),

q2 = qnorm(0.975, mean = mu, sd = sigma))},
n.samples = 1000)

round(c(pred2$q1$mean, pred2$q2$mean),2)

[1] 2.03 2.43

Notice that now the interval we obtain is larger.

0.3.1 Setting Priors

In R-INLA, the default choice of priors for each 𝛽 is

𝛽 ∼ 𝒩(0, 103).

and the prior for the variance parameter in terms of the log precision is

log(𝜏) ∼ logGamma(1, 5 × 10−5)

6

Note

If your model uses the default intercept construction (i.e., Intercept(1) in the lin-
ear predictor) inlabruwill assign a default 𝒩(0, 0) prior to it.

To checkwhichpriors areused in afittedmodel one canuse the functioninla.prior.used()

inla.priors.used(fit.lm)

section=[family]
tag=[INLA.Data1] component=[gaussian]

theta1:
parameter=[log precision]
prior=[loggamma]
param=[1e+00, 5e-05]

section=[linear]
tag=[beta_0] component=[beta_0]

beta:
parameter=[beta_0]
prior=[normal]
param=[0.000, 0.001]

tag=[beta_1] component=[beta_1]
beta:

parameter=[beta_1]
prior=[normal]
param=[0.000, 0.001]

From the output we see that the precision for the observation 𝜏 ∼ Gamma(1𝑒+00, 5𝑒−
05) while 𝛽0 and 𝛽1 have precision 0.001, that is variance 1/0.001.
Changing the precision for the linear effects

The precision for linear effects is set in the component definition. For example, if we want
to increase the precision to 0.01 for 𝛽0 we define the respective components as:

cmp1 = ~-1 + beta_0(1, prec.linear = 0.01) + beta_1(x, model = "linear")

Task

Run the model again using 0.1 as default precision for both the intercept and the
slope parameter.
Click here to see the solution

cmp2 = ~ -1 +
beta_0(1, prec.linear = 0.1) +
beta_1(x, model = "linear", prec.linear = 0.1)

lm.fit2 = bru(cmp2, lik)

Note that we can use the same observation model as before since both the formula
and the dataset are unchanged.

Changing the prior for the precision of the observation error 𝜏

7

Priors on the hyperparameters of the observation model must be passed by defining argu-
ment hyperwithin control.family in the call to the bru_obs() function.

First we define the logGamma (0.01,0.01) prior

prec.tau <- list(prec = list(prior = "loggamma", # prior name
param = c(0.01, 0.01))) # prior values

lik2 = bru_obs(formula = y ~.,
family = "gaussian",
data = df,
control.family = list(hyper = prec.tau))

fit.lm2 = bru(cmp2, lik2)

Thenamesof thepriors available ininlabru canbe seenwithnames(inla.models()$prior)

0.3.2 Visualizing the posterior marginals

Posterior marginal distributions of the fixed effects parameters and the hyperparameters
can be visualized using the plot() function by calling the name of the component. For
example, if want to visualize the posterior density of the intercept 𝛽0 we can type:

plot(fit.lm, "beta_0")

0

10

20

30

40

1.98 2.00 2.02 2.04
beta_0

pd
f

Task

Plot the posterior marginals for 𝛽1 and for the precision of the observation error
𝜋(𝜏|𝑦)
Take hint

8

You can use the bru_names(fit.lm) function to check the names for the different
model components.
Click here to see the solution

plot(fit.lm, "beta_1") +
plot(fit.lm, "Precision for the Gaussian observations")

0

10

20

30

40

0.46 0.48 0.50 0.52
beta_1

pd
f

0.00

0.01

0.02

0.03

75 100 125
Precision for the Gaussian observations

pd
f

Supplementary Material

The marginal densities for the hyper parameters can be also found by call-
inginlabru_model$marginals.hyperpar.

tau_e <- fit.lm$marginals.hyperpar$`Precision for the Gaussian observations`

We can then apply a transformation using the inla.tmarginal function to trans-
form the precision posterior distributions to a SD scale.

sigma_e <- tau_e %>%
inla.tmarginal(function(x) 1/x,.)

Then, we can compute posterior summaries using inla.zmarginal function as fol-
lows:

post_sigma_summaries <- inla.zmarginal(sigma_e,silent = T)
cbind(post_sigma_summaries)

post_sigma_summaries
mean 0.01075447
sd 0.001538938
quant0.025 0.008142316
quant0.25 0.009657471

9

quant0.5 0.01060981
quant0.75 0.01169141
quant0.975 0.01417676

0 Linear model with discrete variables and interactions

Weconsider now the dataset iris. Here data are recorded about 150 different iris flowers
belonging to 3 different species (50 for each species).

You can get more information about these data by typing ?iris

We want to model the Petal.length as a function of Sepal.length and species.

data("iris")
iris %>% ggplot() +
geom_point(aes(Sepal.Length, Petal.Length, color= Species)) +
facet_wrap(.~Species)

setosa versicolor virginica

5 6 7 8 5 6 7 8 5 6 7 8

2

4

6

Sepal.Length

P
et

al
.L

en
gt

h Species

setosa

versicolor

virginica

Model 1 - Only Species effect Our first model assumes that the Sepal length only de-
pends on the species, which is a categorical variable.

𝑌𝑖 ∼ 𝒩(𝜇𝑖, 𝜎𝑦), 𝑖 = 1, … , 150
𝜇𝑖 = 𝜂𝑖 = 𝛽1 𝐼(obs 𝑖belongs to species 1) + 𝛽2 𝐼(obs 𝑖belongs to species 2) + 𝛽3 𝐼(obs 𝑖belongs to species 3)

Using lm()we can fit the model as:

mod1 = lm(Petal.Length ~ Species, data = iris)
summary(mod1)

10

Call:
lm(formula = Petal.Length ~ Species, data = iris)

Residuals:
Min 1Q Median 3Q Max

-1.260 -0.258 0.038 0.240 1.348

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.46200 0.06086 24.02 <2e-16 ***
Speciesversicolor 2.79800 0.08607 32.51 <2e-16 ***
Speciesvirginica 4.09000 0.08607 47.52 <2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.4303 on 147 degrees of freedom
Multiple R-squared: 0.9414, Adjusted R-squared: 0.9406
F-statistic: 1180 on 2 and 147 DF, p-value: < 2.2e-16

Notice that lm() uses setosa as reference category, the parameter Speciesversicolor
is then interpreted as the difference between the effect of the reference species and ef-
fect of versicolor species.

inlabru features a model = 'fixed' component type that allows users to specify linear
fixed effects using a formula as input. The basic component input is a model matrix. Alter-
natively, one can supply a formula specification, which is then used to generate a model
matrix automatically

cmp = ~ spp(
main = ~ Species,
model = "fixed"

)

Task

Use the componentdefinedabove tofit the linearmodel usinginlabru and compare
the output with that form the lm function.
Take hint
Realizing that fixed effects are treated as random effects with fixed precision, the
fitted values can then be inspected via fit1a$summary.random
Click here to see the solution

lik = bru_obs(formula =Petal.Length ~ spp,
family = "Gaussian",
data = iris)

fit1a = bru(cmp, lik)

fit1a$summary.random$spp

ID mean sd 0.025quant 0.5quant 0.975quant mode
1 (Intercept) 1.462020 0.06077726 1.342676 1.462020 1.581365 1.462020
2 Speciesversicolor 2.797970 0.08595203 2.629191 2.797970 2.966747 2.797970
3 Speciesvirginica 4.089965 0.08595203 3.921186 4.089965 4.258743 4.089965

kld

11

1 3.690472e-09
2 3.690472e-09
3 3.690713e-09

Model 2 - Interaction between Species and Sepal.Length

Our second model is defined as

𝑌𝑖 ∼ 𝒩(𝜇𝑖, 𝜎𝑦), 𝑖 = 1, … , 150
𝜇𝑖 = 𝜂𝑖 = 𝛽0 + 𝛽1𝑥𝑖 𝐼(obs 𝑖belongs to species 1) + 𝛽2𝑥𝑖 𝐼(obs 𝑖belongs to species 2) + 𝛽3𝑥𝑖 𝐼(obs 𝑖belongs to species 3)

that is, we have a common intercept𝛽0 while the linear effect of the Sepal length depends
on the Species. Using lm()we have:

mod2 = lm(Petal.Length ~ Species:Sepal.Length, data = iris)
mod2

Call:
lm(formula = Petal.Length ~ Species:Sepal.Length, data = iris)

Coefficients:
(Intercept) Speciessetosa:Sepal.Length

0.5070 0.1905
Speciesversicolor:Sepal.Length Speciesvirginica:Sepal.Length

0.6326 0.7656

Task

Fit the same model in inlabru.
Click here to see the solution

cmp = ~ spp_sepal(
main = ~ Species:Sepal.Length,
model = "fixed"

)

lik = bru_obs(formula =Petal.Length ~ spp_sepal,
family = "Gaussian",

data = iris)

fit1b = bru(cmp, lik)

fit1b$summary.random$spp_sepal

ID mean sd 0.025quant 0.5quant
1 (Intercept) 0.5069832 0.25212298 0.01190098 0.5069833
2 Speciessetosa:Sepal.Length 0.1904884 0.05065267 0.09102426 0.1904884
3 Speciesversicolor:Sepal.Length 0.6326456 0.04260981 0.54897478 0.6326456
4 Speciesvirginica:Sepal.Length 0.7656467 0.03832806 0.69038374 0.7656467
0.975quant mode kld

1 1.0020649 0.5069833 3.742151e-09
2 0.2899527 0.1904884 3.742173e-09
3 0.7163165 0.6326456 3.742173e-09

12

4 0.8409097 0.7656467 3.742179e-09

Task

Plot the estimated regression lines for the three species using model fit1b
Click here to see the solution

preds = predict(fit1b, iris, ~ spp_sepal)

pp = preds %>% ggplot() + geom_line(aes(Sepal.Length, mean, group = Species, color = Species)) +
geom_ribbon(aes(Sepal.Length, ymin = q0.025, ymax = q0.975,

group = Species, fill = Species), alpha = 0.5) +
geom_point(aes(Sepal.Length, Petal.Length,color = Species))

pp

2

4

6

5 6 7 8
Sepal.Length

m
ea

n

Species

setosa

versicolor

virginica

0 Linear Mixed Model

In this practical we will:

• Fit a linear mixed model.

• Understand the basic structure of a Linear Mixed Model (LLM)
• Simulate data from a LMM

13

• Learn how to fit a LMMwith inlabru and predict from the model.

In this examplewe are going to consider a simple linearmixedmodel, that is a simple linear
regression model except with the addition that the data that comes in groups.

Suppose that we want to include a random effect for each group 𝑗 (equivalent to adding a
group random intercept). The model is then:

𝑦𝑖𝑗 = 𝛽0 + 𝛽1𝑥𝑖 + 𝑢𝑗 + 𝜖𝑖𝑗 for 𝑖 = 1, … , 𝑁 and 𝑗 = 1, … , 𝑚.

Here the random group effect is given by the variable 𝑢𝑗 ∼ 𝒩(0, 𝜏−1
𝑢) with 𝜏𝑢 = 1/𝜎2

𝑢
describing the variability between groups (i.e., howmuch the groupmeans differ from the
overall mean). Then, 𝜖𝑗 ∼ 𝒩(0, 𝜏−1

𝜖) denotes the residuals of the model and 𝜏𝜖 = 1/𝜎2
𝜖

captures howmuch individual observations deviate from their group mean (i.e., variability
within group).

The model design matrix for the random effect has one row for each observation (this is
equivalent to a random interceptmodel). The row of the designmatrix associatedwith the
𝑖𝑗-th observation consists of zeros except for the element associated with 𝑢𝑗, which has a
one.

𝜂𝜂𝜂 = 𝐴𝐴𝐴𝑢𝑢𝑢 = 𝐴𝐴𝐴1𝑢𝑢𝑢1 + 𝐴𝐴𝐴2𝑢𝑢𝑢2 + 𝐴𝐴𝐴3𝑢𝑢𝑢3

Supplementary material: LMM as a LGM

In matrix form, the linear mixed model for the j -th group can be written as:

𝑁×1
⏞y𝑗 =

𝑁×2
⏞𝑋𝑗 𝛽⏟

1×1
+

𝑛𝑗×1
⏞𝑍𝑗 𝑢𝑗⏟

1×1
+

𝑛𝑗×1
⏞𝜖𝑗 ,

In a latent Gaussian model (LGM) formulation the mixed model predictor for the i -th
observation can be written as :

𝜂𝑖 = 𝛽0 + 𝛽1𝑥𝑖 +
𝐾

∑
𝑘

𝑓𝑘(𝑢𝑗)

where 𝑓𝑘(𝑢𝑗) = 𝑢𝑗 since there’s only one random effect per group (i.e., a random
intercept for group 𝑗). The fixed effects (𝛽0, 𝛽1) are assigned Gaussian priors (e.g.,
𝛽 ∼ 𝒩(0, 𝜏−1

𝛽)). The random effects u = (𝑢1, … , 𝑢𝑚)𝑇 follow a Gaussian density

𝒩(0,Q−1
𝑢) where Q𝑢 = 𝜏𝑢I𝑚 is the precision matrix for the random intercepts.

Then, the components for the LGM are the following:

• Latent field given by

[𝛽
u
] ∼ 𝒩 (0, [𝜏−1

𝛽 I2 0

0 𝜏−1
𝑢 I𝑚

])

• Likelihood:

𝑦𝑖 ∼ 𝒩(𝜂𝑖, 𝜏−1
𝜖)

• Hyperparameters:

– 𝜏𝑢 ∼ Gamma(𝑎, 𝑏)
– 𝜏𝜖 ∼ Gamma(𝑐, 𝑑)

14

0.5.1 Simulate example data

set.seed(12)
beta = c(1.5,1)
sd_error = 1
tau_group = 1

n = 100
n.groups = 5
x = rnorm(n)
v = rnorm(n.groups, sd = tau_group^{-1/2})
y = beta[1] + beta[2] * x + rnorm(n, sd = sd_error) +
rep(v, each = 20)

df = data.frame(y = y, x = x, j = rep(1:5, each = 20))

Note that inlabru expects an integer indexing variable to label the groups.

ggplot(df) +
geom_point(aes(x = x, colour = factor(j), y = y)) +
theme_classic() +
scale_colour_discrete("Group")

−2

0

2

4

−2 −1 0 1 2
x

y

Group

1

2

3

4

5

Figure 2: Data for the linear mixed model example with 5 groups

0.5.2 Fitting a LMM in inlabru

15

Defining model components and observational model

In order to specify this model wemust use the group argument to tell inlabruwhich vari-
able indexes the groups. The model = "iid" tells INLA that the groups are independent
from one another.

Define model components
cmp = ~ -1 + beta_0(1) + beta_1(x, model = "linear") +
u(j, model = "iid")

The group variable is indexed by column j in the dataset. We have chosen to name this
component v() to connect with the mathematical notation that we used above.

Construct likelihood
lik = bru_obs(formula = y ~.,

family = "gaussian",
data = df)

Fitting the model

Themodel can be fitted exactly as in the previous examples by using the bru function with
the components and likelihood objects.

fit = bru(cmp, lik)
summary(fit)
inlabru version: 2.13.0.9016
INLA version: 25.08.21-1
Components:
Latent components:
beta_0: main = linear(1)
beta_1: main = linear(x)
u: main = iid(j)
Observation models:
Family: 'gaussian'
Tag: <No tag>
Data class: 'data.frame'
Response class: 'numeric'
Predictor: y ~ .
Additive/Linear: TRUE/TRUE
Used components: effects[beta_0, beta_1, u], latent[]
Time used:
Pre = 0.317, Running = 0.317, Post = 0.168, Total = 0.801
Fixed effects:
mean sd 0.025quant 0.5quant 0.975quant mode kld
beta_0 2.108 0.438 1.229 2.108 2.986 2.108 0
beta_1 1.172 0.120 0.936 1.172 1.407 1.172 0
##
Random effects:
Name Model
u IID model
##
Model hyperparameters:
mean sd 0.025quant 0.5quant
Precision for the Gaussian observations 0.995 0.144 0.738 0.986

16

Precision for u 1.613 1.060 0.369 1.356
0.975quant mode
Precision for the Gaussian observations 1.30 0.971
Precision for u 4.35 0.918
##
Marginal log-Likelihood: -179.93
is computed
Posterior summaries for the linear predictor and the fitted values are computed
(Posterior marginals needs also 'control.compute=list(return.marginals.predictor=TRUE)')

0.5.3 Model predictions

To compute model predictions we can create a data.frame containing a range of values
of covariate where we want the response to be predicted for each group. Then we simply
call the predict function while spe

New data
xpred = seq(range(x)[1], range(x)[2], length.out = 100)
j = 1:n.groups
pred_data = expand.grid(x = xpred, j = j)
pred = predict(fit, pred_data, formula = ~ beta_0 + beta_1 + u)

pred %>%
ggplot(aes(x=x,y=mean,color=factor(j)))+
geom_line()+
geom_ribbon(aes(x,ymin = q0.025, ymax= q0.975,fill=factor(j)), alpha = 0.5) +
geom_point(data=df,aes(x=x,y=y,colour=factor(j)))+
facet_wrap(~j)

4 5

1 2 3

−2 −1 0 1 2 −2 −1 0 1 2

−2 −1 0 1 2
−2.5

0.0

2.5

5.0

−2.5

0.0

2.5

5.0

x

m
ea

n

factor(j)

1

2

3

4

5

17

Question

Suppose that we are also interested in including random slopes into our model. As-
suming intercept and slopes are independent, can your write down the linear predic-
tor and the components of this model as a LGM?
Give me a hint
In general, the mixed model predictor can decomposed as:

𝜂𝜂𝜂 = 𝑋𝛽 + 𝑍u

Where 𝑋 is a 𝑛 × 𝑝 design matrix and 𝛽 the corresponding p-dimensional vector of
fixed effects. Then 𝑍 is a 𝑛 × 𝑞𝐽 design matrix for the 𝑞𝐽 random effects and 𝐽
groups; v is then a 𝑞𝐽 × 1 vector of 𝑞 random effects for the 𝐽 groups. In a latent
Gaussian model (LGM) formulation this can be written as:

𝜂𝑖 = 𝛽0 + ∑ 𝛽𝑗𝑥𝑖𝑗 + ∑
𝑘

𝑓(𝑘)(𝑢𝑖𝑗)

See Solution

• The linear predictor is given by

𝜂𝑖 = 𝛽0 + 𝛽1𝑥𝑖 + 𝑢0𝑗 + 𝑢1𝑗𝑥𝑖

• Latent field defined by:

– 𝛽 ∼ 𝒩(0, 𝜏−1
𝛽)

– u𝑗 = [𝑢0𝑗
𝑢1𝑗

] , u𝑗 ∼ 𝒩(0,Q−1
𝑢) where the precision matrix is a block-

diagonal matrix with entriesQ𝑢 = [𝜏𝑢0
0

0 𝜏𝑢1
]

• The hyperparameters are then:

– 𝜏𝑢0
, 𝜏𝑢1

and 𝜏𝜖

To fit this model in inlabruwe can simply modify themodel components as follows:

cmp = ~ -1 + beta_0(1) + beta_1(x, model = "linear") +
u0(j, model = "iid") + u1(j,x, model = "iid")

0 Generalized Linear Model

In this practical we will:

• Learn how to fit a generalised linear model with inlabru

A generalised linear model allows for the data likelihood to be non-Gaussian. In this ex-
ample we have a discrete response variable which we model using a Poisson distribution.
Thus, we assume that our data

𝑦𝑖 ∼ Poisson(𝜆𝑖)
with rate parameter 𝜆𝑖 which, using a log link, has associated predictor

𝜂𝑖 = log𝜆𝑖 = 𝛽0 + 𝛽1𝑥𝑖

18

with parameters 𝛽0 and 𝛽1, and covariate 𝑥.

0.6.1 Simulate example data

This code generates 100 samples of covariate x and data y.

set.seed(123)
n = 100
beta = c(1,1)
x = rnorm(n)
lambda = exp(beta[1] + beta[2] * x)
y = rpois(n, lambda = lambda)
df = data.frame(y = y, x = x)

0.6.2 Fitting a GLM in inlabru

Define model components

The predictor here only contains only 2 components (Intercept and Slope).

Task

Define an object called cmp that includes and (i) intercept beta_0 and (ii) a covariate
x linear effect beta_1.
Click here to see the solution

cmp = ~ -1 + beta_0(1) + beta_1(x, model = "linear")

Define linear predictor

Task

Define a linear predictor eta using the component labels you have defined on the
previous task.
Click here to see the solution

eta = y ~ beta_0 + beta_1

Build observational model

When building the observation model likelihood we must now specify the Poisson likeli-
hood using the family argument (the default link function for this family is the log link).

lik = bru_obs(formula = eta,
family = "poisson",
data = df)

Fit the model

19

Once the likelihood object is constructed, fitting themodel is exactly the same process, we
just need to specify the model components and the observational model, and pass this on
to the bru function:

fit_glm = bru(cmp, lik)

And model summaries can be viewed using

summary(fit_glm)

inlabru version: 2.13.0.9016
INLA version: 25.08.21-1
Components:
Latent components:
beta_0: main = linear(1)
beta_1: main = linear(x)
Observation models:
Family: 'poisson'
Tag: <No tag>
Data class: 'data.frame'
Response class: 'integer'
Predictor: y ~ beta_0 + beta_1
Additive/Linear: TRUE/TRUE
Used components: effects[beta_0, beta_1], latent[]

Time used:
Pre = 0.357, Running = 0.306, Post = 0.0509, Total = 0.715

Fixed effects:
mean sd 0.025quant 0.5quant 0.975quant mode kld

beta_0 0.915 0.071 0.775 0.915 1.054 0.915 0
beta_1 1.048 0.056 0.938 1.048 1.157 1.048 0

Marginal log-Likelihood: -204.02
is computed
Posterior summaries for the linear predictor and the fitted values are computed
(Posterior marginals needs also 'control.compute=list(return.marginals.predictor=TRUE)')

0.6.3 Generate model predictions

To generate new predictions we must provide a data frame that contains the covariate
values for 𝑥 at which we want to predict.

This code block generates predictions for the data we used to fit the model (con-
tained in df$x) as well as 10 new covariate values sampled from a uniform distribution
runif(10).

Define new data, set to NA the values for prediction

new_data = data.frame(x = c(df$x, runif(10)),
y = c(df$y, rep(NA,10)))

20

Define predictor formula
pred_fml <- ~ exp(beta_0 + beta_1)

Generate predictions
pred_glm <- predict(fit_glm, new_data, pred_fml)

Since we used a log link (which is the default for family = "poisson"), we want to pre-
dict the exponential of the predictor. We specify this using a general R expression using
the formula syntax.

Note

Note that the predict function will call the component names (i.e. the “labels”) that
were decided when defining the model.

Since the component definition is looking for a covariate named 𝑥, all we need to provide
is a data frame that contains one, and the software does the rest.

0 Plot

0

10

20

30

−2 −1 0 1 2
Covariate

O
bs

er
va

tio
ns

 (
co

un
ts

)

Figure 3: Data and 95% credible intervals

0 R Code

pred_glm %>% ggplot() +
geom_point(aes(x,y), alpha = 0.3) +
geom_line(aes(x,mean)) +
geom_ribbon(aes(x = x, ymax = q0.975, ymin = q0.025),fill = "tomato", alpha = 0.3)+

21

xlab("Covariate") + ylab("Observations (counts)")

Task

Suppose a binary response such that

𝑦𝑖 ∼ Bernoulli(𝜓𝑖)
𝜂𝑖 = logit(𝜓𝑖) = 𝛼0 + 𝛼1 × 𝑤𝑖

Using the following simulated data, use inlabru to fit the logistic regression above.
Then, plot the predictions for the data used to fit the model along with 10 new co-
variate values

set.seed(123)
n = 100
alpha = c(0.5,1.5)
w = rnorm(n)
psi = plogis(alpha[1] + alpha[2] * w)
y = rbinom(n = n, size = 1, prob = psi) # set size = 1 to draw binary observations
df_logis = data.frame(y = y, w = w)

Here we use the logit link function logit(𝑥) = log (𝑥
1−𝑥) (plogis() function in R)

to link the linear predictor to the probabilities 𝜓.
Take hint
You can setfamily = "binomial" for binary responses and theplogis() function
for computing the predicted values.

Note

The Bernoulli distribution is equivalent to a Binomial(1, 𝜓) pmf. If you have
proportional data (e.g. no. successes/no. trials) you can specify the number
of events as your response and then the number of trials via the Ntrials =
n argument of the bru_obs function (where n is the known vector of trials in
your data set).

Click here to see the solution

22

Model components
cmp_logis = ~ -1 + alpha_0(1) + alpha_1(w, model = "linear")
Model likelihood
lik_logis = bru_obs(formula = y ~.,

family = "binomial",
data = df_logis)

fit the model
fit_logis <- bru(cmp_logis,lik_logis)

Define data for prediction
new_data = data.frame(w = c(df_logis$w, runif(10)),

y = c(df_logis$y, rep(NA,10)))
Define predictor formula
pred_fml <- ~ plogis(alpha_0 + alpha_1)

Generate predictions
pred_logis <- predict(fit_logis, new_data, pred_fml)

Plot predictions
pred_logis %>% ggplot() +
geom_point(aes(w,y), alpha = 0.3) +
geom_line(aes(w,mean)) +
geom_ribbon(aes(x = w, ymax = q0.975, ymin = q0.025),fill = "tomato", alpha = 0.3)+

xlab("Covariate") + ylab("Observations")

0.00

0.25

0.50

0.75

1.00

−2 −1 0 1 2
Covariate

O
bs

er
va

tio
ns

0 Generalised Additive Model

In this practical we will:

23

• Learn how to fit a GAM with inlabru

Generalised Additive Models (GAMs) are very similar to linear models, but with an addi-
tional basis set that provides flexibility.

Additive models are a general form of statistical model which allows us to incorporate
smooth functions alongside linear terms. A general expression for the linear predictor of
a GAM is given by

𝜂𝑖 = 𝑔(𝜇𝑖) = 𝛽0 +
𝐿

∑
𝑗=1

𝑓𝑗(𝑥𝑖𝑗)

where the mean𝜇𝜇𝜇 = 𝐸(y|x1, … , x𝐿) and 𝑔() is a link function (notice that the distribu-
tion of the response and the link between the predictors and this distribution can be quite
general). The term 𝑓𝑗() is a smooth function for the j -th explanatory variable that can be
represented as

𝑓(𝑥𝑖) =
𝑞

∑
𝑘=0

𝛽𝑘𝑏𝑘(𝑥𝑖)

where 𝑏𝑘 denote the basis functions and 𝛽𝐾 are their coefficients.

Increasing the number of basis functions leads to a more wiggly line. Too few basis func-
tions might make the line too smooth, too many might lead to overfitting.

To avoid this, we place further constraints on the spline coefficients which leads to con-
strained optimization problemwhere the objective function to be minimized is given by:

min∑
𝑖

(𝑦𝑖 − 𝑓(𝑥𝑖))2 + 𝜆(∑
𝑘

𝑏2
𝑘)

The first term measures how close the function 𝑓() is to the data while the second term
𝜆(∑𝑘 𝑏2

𝑘), penalizes the roughness in the function. Here, 𝜆 > 0 is known as the smooth-
ing parameter because it controls the degree of smoothing (i.e. the trade-off between the
two terms). In a Bayesian setting,including the penalty term is equivalent to setting a spe-
cific prior on the coefficients of the covariates.

In this exercise we will set a random walk prior of order 1 on 𝑓 , i.e. 𝑓(𝑥𝑖) − 𝑓(𝑥𝑖 − 1) ∼
𝒩(0, 𝜎2

𝑓) where 𝜎2
𝑓 is the smoothing parameter such that small values give large smooth-

ing. Notice that we will assume 𝑥𝑖’s are equally spaced.

0.9.1 Simulate Data

Lets generate some data so evaluate how RWmodels perform when estimating a smooth
curve. The data are simulated from the following model:

𝑦𝑖 = 1 + cos(𝑥) + 𝜖𝑖, 𝜖𝑖 ∼ 𝒩(0, 𝜎2
𝜖)

where 𝜎2
𝜖 = 0.25

set.seed(123)
n = 100
x = rnorm(n)

24

eta = (1 + cos(x))
y = rnorm(n, mean = eta, sd = 0.5)

df = data.frame(y = y,
x_smooth = inla.group(x)) # equidistant x's

0.9.2 Fitting a GAM in inlabru

Now lets fit a flexible model by setting a random walk of order 1 prior on the coefficients.
This can be done bye specifying model = "rw1" in the model component (similarly,a ran-
dom walk of order 2 can be placed by setting model = "rw2")

cmp = ~ Intercept(1) +
smooth(x_smooth, model = "rw1")

Now we define the observational model:

lik = bru_obs(formula = y ~.,
family = "gaussian",
data = df)

We then can fit the model:

fit = bru(cmp, lik)
fit$summary.fixed

mean sd 0.025quant 0.5quant 0.975quant mode
Intercept 1.338924 0.06007888 1.221818 1.338595 1.457907 1.3386

kld
Intercept 1.449229e-08

The posterior summary regarding the estimated function using RW1 can be accessed
through fit$summary.random$smooth, the output includes the value of 𝑥𝑖 (ID) as well
as the posterior mean, standard deviation, quantiles and mode of each 𝑓(𝑥𝑖). We can use
this information to plot the posterior mean and associated 95% credible intervals.

25

1 R plot

−1.5

−1.0

−0.5

0.0

0.5

1.0

−2 −1 0 1 2
covariate

Figure 4: Smooth effect of the covariate

2 R Code

data.frame(fit$summary.random$smooth) %>%
ggplot() +
geom_ribbon(aes(ID,ymin = X0.025quant, ymax= X0.975quant), alpha = 0.5) +
geom_line(aes(ID,mean)) +
xlab("covariate") + ylab("")

2.0.1 Model Predictions

We can obtain the model predictions using the predict function.

pred = predict(fit, df, ~ (Intercept + smooth))

The we can plot them together with the true curve and data points:

pred %>% ggplot() +
geom_point(aes(x_smooth,y), alpha = 0.3) +
geom_line(aes(x_smooth,1+cos(x_smooth)),col=2)+
geom_line(aes(x_smooth,mean)) +
geom_line(aes(x_smooth, q0.025), linetype = "dashed")+
geom_line(aes(x_smooth, q0.975), linetype = "dashed")+
xlab("Covariate") + ylab("Observations")

26

0

1

2

3

−2 −1 0 1 2
Covariate

O
bs

er
va

tio
ns

Figure 5: Data and 95% credible intervals

Task

Fit a flexible model using a random walk of order 2 (RW2) and compare the results
with the ones above.
Take hint
You can set model = "rw2" for assigning a random walk 2 prior.
Click here to see the solution

cmp_rw2 = ~ Intercept(1) +
smooth(x_smooth, model = "rw2")

lik_rw2 = bru_obs(formula = y ~.,
family = "gaussian",
data = df)

fit_rw2 = bru(cmp_rw2, lik_rw2)

Plot the fitted functions
ggplot() +
geom_line(data= fit$summary.random$smooth,aes(ID,mean,colour="RW1"),lty=2) +
geom_line(data= fit_rw2$summary.random$smooth,aes(ID,mean,colour="RW2")) +
xlab("covariate") + ylab("") + scale_color_discrete(name="Model")

27

−1.2

−0.8

−0.4

0.0

0.4

−2 −1 0 1 2
covariate

Model

RW1

RW2

We see that the RW1 fit is too wiggly while the RW2 is smoother and seems to have
better fit.

28

	Linear Model
	Simulate example data
	Fitting a linear regression model with inlabru

	Plot
	R Code
	Setting Priors
	Visualizing the posterior marginals

	Linear model with discrete variables and interactions
	Linear Mixed Model
	Simulate example data
	Fitting a LMM in inlabru
	Model predictions

	Generalized Linear Model
	Simulate example data
	Fitting a GLM in inlabru
	Generate model predictions

	Plot
	R Code
	Generalised Additive Model
	Simulate Data
	Fitting a GAM in inlabru

	R plot
	R Code
	Model Predictions

